
 1 / 27

Developer Guide

V1.0.0

Aug. 2017

 2 / 27

Contents

SAFETY INSTRUCTIONS .. 3

GENERAL INFORMATION .. 4

1.SOURCE FILE .. 4

2.REFERENCE FRAME ... 4

3.COORDINATE .. 5

3. BUTTONS & INDICATOR LIGHTS .. 6

4.EXTENSION DESCRIPTION .. 7

SPECIFICATIONS .. 8

APPLICATION INFORMATION ... 10

1.SEND COMMAND OVER USB CABLE ... 10

2.SEND COMMAND OVER BLUETOOTH .. 12

3.THE 2
ND

 UART ... 15

4.SUPPORTED CODING PLATFORM ... 16

5.RECOVER FROM THE WRONG CODE ... 17

PROTOCOL .. 18

1.INTRODUCTION .. 18

2.EXAMPLE .. 18

3.COMMANDS(TBD)·.. 18

UARM COMMUNITY .. 26

RELEASE NOTE .. 27

 3 / 27

Safety Instructions

1. Please don’t put your hands between the arms when uArm is moving.

2. Please use the official power supply for safety reasons.

3. Please clear a space for uArm, in case of knocking down anything.

 4 / 27

General Information

General information for the robot arm, and it’s good to know before

developing.

1.Source file

 Source code of Firmware for Swift Pro:

https://github.com/uArm-Developer/SwiftProForArduino

 Source code of ROS for Swift Pro:

https://github.com/uArm-Developer/SwiftproForROS

 Python library for Swift Pro:

https://github.com/uArm-Developer/pyuf

 OpenMV example for tracking:

https://github.com/uArm-Developer/OpenMV-Examples

 To be continued…(Arduino, C++, Raspberry Pi)

2.Reference Frame

 5 / 27

3.Coordinate

（The picture in the right also shows the dynamic payload range of uArm.

Test condition: G2202 F1000; Red point is the Tool Center Point.）

The origin of base coordinate is in the center of the base. But the tool center

point is different for different end-effectors. And we also offer the different

commands for different usages.

Suction Laser Hot End Universal Holder

Currently we offer 4 kinds of mode:

M2400 S0 : Normal mode (end-effector tools: suction)

M2400 S1 : Laser mode (end-effector tools: laser)

M2400 S2 : 3D printing mode (end-effector tools: Hot End)

M2400 S3 : Universal holder mode (end-effector tools: universal holder)

For the gripper, there is no special mode since gripper has the fingers and can rotate

horizontally.

Origin of Base

Coordinate (0,0,0)

Position of Tool Center Point for each End-effectors

P
E
N

 6 / 27

3. Buttons & Indicator Lights

Caution: By default, the user defined button is for switching between Bluetooth and USB mode.

Please ensure the button is UP while communicating with uArm via USB.

 7 / 27

4.Extension Description

Details of 30P Base Extension

 8 / 27

Specifications

Specifications

Weight 2.2kg

Degrees of Freedom 4

Repeatability 0.2mm

Max. Payload 500g

Working Range 50mm～320mm

Max. Speed 100mm/s

Connector Micro USB

Wireless Bluetooth 4.0

Input Voltage DC 12V

Power Adapter Input:100～240V 50/60Hz; Output: 12V5A 60W

Operation Temperature &

Humidity

0℃-35℃ 30%RH-80%RH

 noncondensing

Storage Temperature &

Humidity

-20℃-60℃ 30%RH-80%RH

 noncondensing

Hardware

Joint Type Customized Gearbox + Stepper

Position Feedback 12 bit Encoder

Reducer Customized ultra-thin Gearbox

Dimension(L*W*H) 150mm*140mm*281mm

Mother Board Arduino MEGA 2560

Material Aluminum

Baud Rate 115200bps

Extendable I/O Interface I/O *27，IIC *1，5V*1，12V*1，Stepper*1

Software

PC Control uArm Studio

App Control uArm Play

For Developer Python/Arduino/ROS

Feature Open Source

Joint Speed & Torque

 Speed Lifetime Torque

Base Motor 40°/s >3000h 12kg⋅cm

Left Motor 40°/s >3000h 12kg⋅cm

Right Motor 40°/s >3000h 12kg⋅cm

End-effector Motor 60°/s 500h 2kg⋅cm

 9 / 27

Accessories

Pump

Suction Diameter 5mm～10mm

Max. Pressure 33kPa

Max. Lifting Weight 1000g

Feature With feedback

Universal Holder

Weight 36g

Dimension(L*W*H) 62mm*25mm*15mm

Material Aluminum

Holder Diameter 14mm

Gripper

Weight 58g

Dimension(L*W*H) 92mm*50mm*18mm

Material Aluminum

Max. Force 750~800g

Max. Size of Object 40mm

Max. Speed 20mm/s

Drive Mode Electrically-driven

Working Voltage/Current 6V/300mA

OpenMV Camera

Focal Length 2.8mm

FOV 115°

F-number f2.0

Programmable Method Micro Python

Weight 16g

Dimension(L*W*H) 45mm*36mm*30mm

3D Printing Kit

Type E3D v6

Consumption 35W

Nozzle Diameter 0.4mm

Max Temp 270 ℃

Material PLA

Max. Printing Speed 20mm/s

File Format .gcode

Printing Size(L*W*H) 10mm*10mm*10mm

Laser Engraving Kit

Laser Power 500mW

Working Voltage/Current 12V/5A

Wave Length 405nm

Weight 140g

Dimension(L*W*H) 55mm*33mm*88mm

Materials to Engrave
Wood, Plastic, Leather, Feather,

Paper, etc.

 10 / 27

Application Information

We would introduce several ways to play with the robot arm in different platform.

1.Send Command over USB Cable

Power on the uArm and open the Arduino IDE. And setting the board like the picture below.

Please make sure the port you are choosing is the correct port of uArm.

Open the serial monitor in the right side of Arduino IDE. After clicking, and you could hear

a beep which means the uArm is connected.

 11 / 27

Set the parameter of serial monitor in the right bottom. If the setting is correct, you would

receive the detail information from uArm like the picture below.

Now, you are able to send the command to the uArm. Let’s send “G0 X250 Y0 Z130

F10000”.

 12 / 27

If uArm finishes the movement, it replies “ok”.

Please check the chapter of Protocol (Page 20) in this guide to test more commands.

2.Send Command over Bluetooth

Plug in the Bluetooth stick. And press down the button beside the power button.

Power on the uArm. When the Bluetooth stick is searching, the blue indicator keeps blink

until the wireless connection is built up between stick and uArm. And the blue indicators in both

stick and uArm become solid.

 13 / 27

Open the Arduino IDE. And setting the COM port like the picture below. Please make sure

the port you are choosing is the correct port of Bluetooth stick.

 (Driver of stick: http://www.ftdichip.com/Drivers/VCP.htm)

Open the serial monitor in the right side of Arduino IDE. After clicking, and you could hear

a beep which means the uArm is connected.

 14 / 27

Set the parameter of serial monitor in the right bottom like the picture below.

Now, you are able to send the command to the uArm. Let’s send “G0 X250 Y0 Z130

F10000”.

 15 / 27

If uArm finishes the movement, it replies “ok”.

Please check the chapter of Protocol (Page 20) in this guide to test more commands.

3.The 2nd UART

Sometimes the 2nd UART is important for our project, for example you want another

Arduino to communicate with uArm.

During the design, we have had it in mind. There is the 2nd UART in the 30P base extension.

All the pins of extension board are connected with the Arduino MEGA 2560 directly so it’s

TTL level. And voltage above 5V might burn the IO out.

 16 / 27

So wiring the UART with the jump wire and also the GND. Then the hardware set up is

finished. Then we have to change the main communication port from USB to the 2nd UART port,

since the code only supports one port to deal with the command.

Sending “#0 M2500” command over USB cable to switch the port, and there are several

point you should know:

1. The port will be switched immediately (both ports receive the reply “ok”), and the USB port

can not be used as the communication port any more, only 2nd UART port would work for

sending Gcode.

2. There is no way to switch port any more, the only way to use USB port is reset the system

by power button.

If it’s not convenient for your project, please try to modify the source code following the

steps below:

1. Download the Arduino source file in Github.

2. Find the file named uArmSerial.cpp and modify the code in line 16 from _serial=&serial; to

_serial=&serial2; .

3. Find the file named uArmService.cpp and modify the code in line 693 from

commSerial.setSerialPort(&Serial); to commSerial.setSerialPort(&Serial2); .

4. Rebuild the files and download the code to uArm.

4.Supported Coding Platform

The main code is written by Arduino IDE. Please check the link below:

https://github.com/uArm-Developer/SwiftProForArduino

If you want to make it work in your computer, please put the entire file into your Arduino

libraries folder. (normally it’s in C:/Users/name/documents/Arduino/libraries/)

Currently we released the library of Python and ROS. For more information please check the

link below.

Source code of ROS for Swift Pro:

https://github.com/uArm-Developer/SwiftproForROS

Python library for Swift Pro:

https://github.com/uArm-Developer/pyuf

 17 / 27

And also the demo of OpenMV:

https://github.com/uArm-Developer/OpenMV-Examples

You could find the details steps in quick start guide.

5.Recover from the Wrong Code

Sometimes you might want to go back to the official firmware and it’s too complicated to

download the Arduino source code and download it. Or you flashed bad code to the uArm and

you can’t even run it. Please try the offline flash tool here :

https://drive.google.com/drive/u/0/folders/0B-L-tCvknXU9dDhfSGJwT1JDY1U

 18 / 27

Protocol

1.Introduction

• uArm Gcode is an important part of the uArm software.

• Based on the standard gCode protocol, we add a new protocol head in

front of the gCode so that it can be more easily to use and debug.

• What’s more, it is designed to be compatible with the standard gCode. (We

offer the code of decode the standard gCode)

2.Example

• Sending command from PC

 “#25 G0 X180 Y0 Z150 F5000”

//move to [180,0,150] with the speed 5000mm/min

• Reply from uArm “$25 ok”

3.Commands(TBD)·

Command can be divided into two parts:

Command with underline: it’s the new added protocol head.

• The command from PC starts with ‘#’, while the command from uArm

starts with’$’.

• And the data following the symbol decided by the PC, and the reply from

 19 / 27

the uArm should have the same data which indicates it finish the

command. (In the example above, PC sends the command with ‘#25’ and

uArm replies the command with ’$25’)

Command without the underline: it’s the standard gCode.

Caution

1.There should be blank space between each parameter;

2.The letters in the command should be capitalized;

 20 / 27

GCode Command (v1.2) Description Feedback

1. #n is used for the debug, if you don’t want to use it please remove it directly.

 (For Example: G2202 N0 V90\n)

2. ‘\n’ is the symbol of line feed.

Moving Command (parameters are in underline)

#n G0 X100 Y100 Z100

F1000\n

Move to XYZ(mm), F is
speed(mm/min)

$n ok \n or $n Ex \n (refer to Err

output)

#n G1 X100 Y100 Z100

F1000\n

After entering the laser mode
(M2400 S1), command G1
means laser on, G0 means off.

$n ok \n or $n Ex \n (refer to Err

output)

#n G2004 P1000\n Delay microsecond
$n ok \n

#n G2201 S100 R90 H80

F1000\n

Polar coordinates, S is

stretch(mm), R is

rotation(degree),H is

height(mm), F is

speed(mm/min)

$n ok \n or $n Ex \n (refer to Err

output)

#n G2202 N0 V90\n

Move the motor to the

position ,N is ID of

joints(0~3),V is angle(0~180)

$n ok \n or $n Ex \n (refer to Err

output)

#n G2203\n Stop moving
$n ok \n or $n Ex \n (refer to Err

output)

#n G2204 X10 Y10 Z10

F1000\n
Relative displacement

$n ok \n or $n Ex \n (refer to Err

output)

#n G2205 S10 R10 H10

F1000\n

Polar coordinates for relative

displacement

$n ok \n or $n Ex \n (refer to Err

output)

Setting Command (parameters are in underline)

#n M17\n Attach all the joint motors $n ok \n

#n M2019\n Detach all the joint motors $n ok \n

#n M2120 V0.2\n

Set time cycle of feedback,

return Cartesian coordinates, V

is time(seconds)
@3 X154.71 Y194.91 Z10.21\n

#n M2200\n Check if uArm is moving $n ok V1\n (1 moving,0 stop)

#n M2201 N0\n
attach motor, N is ID of

joints(0~3)

$n ok \n or $n Ex \n (refer to Err

output)

#n M2202 N0\n
Detach motor, N is ID of

joints(0~3)

$n ok \n or $n Ex \n (refer to Err

output)

 21 / 27

#n M2203 N0\n
Check if the motor is attached,

N is ID of joints(0~3)

$n ok V1\n (1 attached,0

detached)

#n M2210 F1000 T200\n
buzzer,F is frequency, T is time

(ms)

$n ok \n or $n Ex \n (refer to Err

output)

#n M2211 N0 A200 T1\n

Read EEPROM N(0~2,0 is

internal EEPROM,1 is

USR_E2PROM, 2 is

SYS_E2PROM), A is address,

T is type (1 char,2 int,4 float)

$n ok V10\n

#n M2212 N0 A200 T1 V10\n

Write EEPROM N(0~2,0 is internal

EEPROM,1 is USR_E2PROM, 2 is

SYS_E2PROM), A is address, T is

type (1 char,2 int,4 float)V is the

input data

$n ok\n

#n M2213 V0\n
Default function of base

buttons (0 false, 1 true)
$n ok\n

#n M2220 X100 Y100

Z100\n

Convert coordinates to angle of

joints

$n ok B50 L50 R50\n (B joint

0,L joint 1,R joints 2, 0~180)

#n M2221 B0 L50 R50\n
Convert angle of joints to

coordinates
$n ok X100 Y100 Z100\n

#n M2222 X100 Y100 Z100

P0\n

Check if it can reach,P1 polar,

P0 Cartesian coordinates

$n ok V1\n (1 reachable, 0

unreachable)

#n M2231 V1\n pump V1 working, V0 stop
$n ok \n or $n Ex \n (refer to Err

output)

#n M2232 V1\n gripper V1 close, V0 open
$n ok \n or $n Ex \n (refer to Err

output)

#n M2234 V1\n
Enable/disable Bluetooth

(1:enable, 0:disable)
$n ok\n

#n M2240 N1 V1\n Set the digital IO output
$n ok \n or $n Ex \n (refer to Err

output)

M2245 Vbtname\n

Set the name of Bluetooth, 11

letters limited (Do not add #n in

this command)

ok \n

M2246\n Rewrite UUID ok\n

#n M2300 N10\n
Please check the Grove

modules & OpenMV below

 22 / 27

#n M2301 N10 V1000\n
Please check the Grove

modules & OpenMV below

#n M2302 N10 V1\n
Please check the Grove

modules & OpenMV below

#n M2303 N17 T0 V0\n
Please check the Grove

modules & OpenMV below

#n M2400 S0\n

Set the mode of arm (0:Normal

1:Laser 2:3D printing

3:Universal holder)

$n ok \n

#n M2401\n
Set the current position into the

reference position
$n ok \n

#n M2410\n Set the height zero point $n ok \n

#n M2411 S100\n
Set the offset of end-effector

(mm)
$n ok \n

#n M2500\n
Please check the Grove

modules & OpenMV below

Querying Command (parameters are in underline)

#n P2200\n Get the current angle of joints $n ok B50 L50 R50\n

#n P2201\n Get the device name $n ok V3.2\n

#n P2202\n Get the hardware version $n ok V1.2\n

#n P2203\n Get the software version $n ok V3.2\n

#n P2204\n Get the API version $n ok V3.2\n

#n P2205\n Get the UID $n ok V0123456789AB\n

#n P2206 N0\n Get the angle of number 0 joint

(0~2)

$n ok V80\n

#n P2220\n Get current coordinates $n ok X100 Y100 Z100\n

#n P2221\n Get current polar coordinates $n ok S100 R90 H80\n

#n P2231\n Get the status of pump
$n ok V1\n (0 stop, 1 working, 2

grabbing things)

#n P2232\n Get the status of gripper
$n ok V1\n (0 stop, 1 working, 2

grabbing things)

#n P2233\n Get the status of limited switch
$n ok V1 (1 triggered, 0

untriggered)

 23 / 27

#n P2234\n
Get the status of power

connection

$n ok V1 (1 connected, 0

unconnected)

#n P2240 N1\n Get the status of digital IO $n ok V1\n (1 High, 0 Low)

#n P2241 N1\n Get the status of analog IO
$n ok V295\n (return the data of

ADC)

#n P2242\n
Get the default value of

AS5600 in each joint
$n ok B2401 L344 R1048\n

#n P2400\n Check current status
$n ok V1\n (0: normal; 1: laser; 2:

3D printing; 3: Universal holder;)

Ticking feedback

@1 Ready

@3 Timed feedback , ”M2120”

@4 N0 V1\n

Report the button event.

N: 0 = Menu button, 1 = Play

button

V: 1 = Click, 2 = Long Press

@5 V1\n Report event of power

connection

@6 N0 V1\n Report event of limit switch in

end-effector

@7 temp error Temperature error in 3D

printing

Err Output

E20 Command not exist

E21 Parameter error

E22 Address out of range

E23 Command buffer ssssfull

E24 Power unconnected

E25 Operation failure

Grove modules & OpenMV

N is the ID of each grove modules:

10: Color sensor; 11: Gesture sensor; 12: Ultrasonic; 13: Fan; 14: Electromagnet; 15:

Temperature & Humidity; 16: PIR Motion; 17: RGB LCD;

#n M2300 N10\n
Initialize the Grove modules, N

is the ID of each module

#n M2301 N10 V1000\n Auto report time for color @10 N10 R20 G10 B255\n

 24 / 27

sensor, V is the time

(microsecond)

(RGB value)

#n M2301 N11 V1000\n

Auto report time for gesture

sensor, V is the time

(microsecond)

@10 N11 V16\n

(1: right; 2: left; 4: up; 8: down;
16: forward; 32: backward; 64:
CW; 128: CCW;)

#n M2301 N12 V1000\n
Auto report time for ultrasonic,

V is the time (microsecond)

@10 N12 V27\n

(The distance value in cm)

#n M2301 N15 V1000\n

Auto report time for T&H, V is

the time (microsecond)

@10 N15 T32.12 H76.5\n

(temperature in ℃, humidity in %)

#n M2301 N16 V1000\n

Auto report time for PIR

motion, V is the time

(microsecond)

@10 N16 V1\n

(1: motion; 0: no motion;)

#n M2302 N13 V128\n
Fan setting, V is the duty cycle

from 0-255

$n ok\n

#n M2302 N14 V1\n
Electromagnet setting, 0 is off,

1 is on

$n ok\n

#n M2303 N17 T0\n
Turn off/on display (0 is off, 1 is

on, 2 is clear)

$n ok\n

#n M2303 N17 R25 G25

B25\n

Change the rgb value of

backlight

$n ok\n

#n M2303 S1 VText\n

S is the line (1 or 2), V is the

text content

For example:

M2303 S1 Vufactory

$n ok\n

#n M2500\n

Switch the uart0 to uart2 for

external TTL uart communication

(For example OpenMV)

$n ok \n

d. Different modes for uArm Swift Pro

Since different types of the end-effectors have different length and height, so we designed the command

M2400, which could help us to fit the uArm into different situations easily. With this command, there is no

need to concern about how to adjust the parameters for different situations.

Currently we offer 4 kinds of mode:

M2400 S0 : Normal mode (end-effector tools: suction)

M2400 S1 : Laser mode (end-effector tools: laser)

M2400 S2 : 3D printing mode (end-effector tools: hot end)

 25 / 27

M2400 S3 : Universal holder mode (end-effector tools: universal holder)

For the gripper, there is no special mode since gripper has the fingers and can rotate horizontally.

 26 / 27

uArm Community

UFACTORY Official Forum

uArm User Facebook Group

Ask for Help

 27 / 27

Release Note

Version Note

1.0.0 Setup the document Tony

1.0.1 Update the working range Tony

